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ABSTRACT

In view of the trend toward the representation of signals as
physical observables, characterized by vectors in an abstract signal
space, rather than as time or frequency functions, it is desirable to
define dimensjonality in a manner which would be independent of the
choice of basis for the vectors.

In this work, the dimensionality of a collection of signals is
defined as equal tothe number of free parameters required in a hypo-
thetical signal generator capable of producing a close approximation
toeach signal in the collection. Thus defined, dimensionality becomes
a relationship between the vectors representing the signals. This re-
lationship need not be a linear one, and does not depend on the basis
onto which the vectors are projected in signal measuring processes.
It represents a lower bound on the number of coefficients required to
describe the signals, no matter how sophisticated the representation
scheme, and thus provides an index of the redundancy in a given
representation.

A computer program for estimating this dimensionality from
the signal coefficients on an arbitrary orthogonal basis is developed.
The program, suitable for an IBM 7094 computer, is based on some
results from a related multidimensional scaling problem, and utilizes

an inverse relationship between the variance in interpoint distance

iii




within a hypersphere, and the dimensionality of the hypersphere.
This method is independent of the choice of orthonormal basis, and
no prior knowledge of the analytical form of the signals is assumed.

The validity of the program is verified by uoiné it to estimate
the dimensionality of signals of known structure, and therefore of

known dimensionality,
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I INTRODUCTION

There has been a tendency in the past for authors of
communications papers to speak of a signal synonymously with
its representation as a time or frequency function. Thus a
particular signal may be designated as a "sine wave", or “"square
wave", or as a "band-limited" signal. In more recent publications
(1, Z)*. it has been demonstrated that such an approach tends to
obscure the true nature of signals. In particular, it assumes
that in the noise-free case, complete knowledge of the signal
is possible, while in fact the only access one has to a physical
signal is through a measuring device, or filter, having finite
capabilities and therefore able to yield only an approximation to

the signal,

To better appreciate signals as physical observables,
only partially a¢cessible, it has proven useful to consider them
as vectors, |F), on an abstract infinite dimensional signal
space, V. (Where practical, Dirac's notation, as adapted by
Lai (2), will be followed in this report.) In this representation,
the signal energy is characterized by the square of the vector

norm. (F|F), and the structure by the vector "direction. "

* Whole numbers in parenthesis refer to references listed
beginning on Page 67,



Determining a given relationship between signals, e.g. correlation,
summation, etc., thus becomes an operation with the vectors them-
selves, and is independent of any time or frequency basis. An
attribute of signal collections which will be discussed in detail

in this document is dimensionality.

The definition of signal dimensionality is at best a
difficult task, but several ad hoc definitions are in use, the
most common being based on a time-bandwidth product. Here,
one speaks of the dimensionality of individual signals, not of
classes or collections. If the signal, which is specified as
a time function, has negligible energy in the frequency components .
above B cycles per second, it will have 2B degrees of freedom
per second. The dimensionality of a T second portion of this
signal is then defined to be 2B7, The usefulness of such a
definition lies in the sampling theorenis which permit recovery
of the 7 second portion of the time function from 2BT uniformly
spaced (in time) amplitude samples, with an error which varies

inversely with the product Br. (3,4, 5)

Another definition which finds frequent application
is based on an orthonormal expansion of the signal, again
usually expressed as a time function, The signal is represented

as a linear sum of weighted orthonormal components, each




weight being the inner product of the signal with the corresponding
component function, The number of such components reqﬁired

to represent the signal to within a specified energy error is then
defineC to be the dimensionality. The pfevious definition is |

a special case of this one, where the orthonormal components

are shifted cardinal functions.

Despite their usefulness, such definitions are unsatisfying
in view of the trend toward thinking of signals as physical
observables rather than as functions. It would seem more
satisfactory to define dimensionality in terms of some
relationship involving t?ze vectors representing a given
collection of signals. Thus defined, dimensionality would

become an intrinsic property of the collection.

In order to obtain meaning from a signal, some
measurement must be performed upon it. Such a measurement
usually has the form of a projection of the signal vector
onto prescribed basis vectors, or "patterns", ( <1>1 I (¢z| ’
(¢3| daid O (¢n| » which characterize the measuring apparatus.
Since the only access an observer has to the signal is through
these measurements, a techniq.e must be found for evaluating
the dimensionality of the signal collection in terms of these

measurements,




A, Plan of the Report

The purpose of this work is twofold:

1. To suggest a generalized definition of signal-
collection dimensionality.

2. To develop a technique for estimating this
intrinsic dimensionality for collections of_

signals,

In the present chapter, the problem has been roughly
described. In Chapter II, this description will be extended to
a precise mathematical formulation, and the generalized

definition of dimensionality will be given.

The technique for estimation of signal cluss dimensionality
is based on a relationship between the dimensionality and the
geometry of the vectors representing the signals in signal
space, Chapter IIl is in two parts. The first part sets
forth certain assumptions about the signal collection which
must be valid if the estimation of the dimensionality is to be
feasible. The second part discusses an inverse relationship
between the variance in interpoint distances in a hypersphere and

the dimensionality of the hypersphere,
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In Chapter IV, this relationship in hyperspheres is
utilized in developing a technique for estimating the dimensionality
of signal collections. Nothing is assumed known about the
signals with the exception of their spectral coefficients on
some arbitrary orthonormal basis. A requirement of the
technique is that the final result remain invariant under change

of this basis.

In Chapter V, a computer program outline and
simplified flow chart are given which realize the technique
developed in Chapter IV, To obtain the greatest generality,
the program must be an iterative one, and its usefulness is
predicated on the availability of a large-scale automatic digital

computer.

In Chapter VI, examples of the application of the
technique to several collections of signals are given. The

computer used in these tests was an IBM 7094,

Chapter VII summarizes and discusses the program and

the experimental results,




II. FORMULATION OF THE PROBLEM

A common approach in the representation and analysis of a
collection of experimentally obtained physical signals is to find t;he
spectral coefficients of the signal when expanded in a set of basis
functions ($i|.i =1, 2,... In order to minimize the effects of
slight numerical errors, the basis functions are required to be un-

correlated, for example,

(@l og)= [ e gte) 4yl = & 8 (1)

for all i and j in the case where the basis functions ¢i(t) are functions

of time. For convenience, the ki are set equal to unity through
suitable scale factors associated with the |¢i ).
If the orthonormal set of basis functions is complete, the

time-function representation of a signal may be written as

Q0
)= ) o) (FF) (2)
i=1
orx ©
)= ) ale) (3)
i=1
where
*
a = [atemw = ()
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Using a familiar signal representation concept, the signal may
be represented as a vector defined on a hyperspace having the ¢i(t) as
a basis. (1) The ($i| are considered as unit vectors, and the signal
vector If ) has coordinates a, on this basis. ‘
The choice of a suitable basis is somewhat arbitrary. Provided 0
that both bases are complete, that is, all of the signals be wholly within
the subspace spanned by the bases, each signal could just as properly

be represented by its ccordinates in a second basis \l;i.

oo o 0]

|F>=_Z a e, )= Z b, |4, ) (4)

1= 1 =

The vector representing the signal does not depend on the basis, rather,
the coordinates of the vector are dependent on the choice of the basis.
From a practical standpoint, there is much to be gained from
selecting a set of basis functions such that a minimum of vector com-
ponents suffice to represent the signal to within some error criterion.
In practice, signals to be investigated are often empirical rather than
being given as analytical functions of time, frequency, or other
variables. The spectral coefficients of the signal are obtained by
passing the signal through a series of filters, each "matched® to one
of the basis patterns, and sampling at the appropriate instant as shown
in Figure 1. These sample values are then the projections of the signal
in question on each of the basis patterns. To avoid the expense of a

large number of filters, the basis functions are chosen such that a
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small number of basis functions spans the same subspace of V as the
signal to within a prescribed energy error.

The desirability of selecting the fewest numbers for represent-
ing the signals is more basic than simple considerations of parsimony,
however. Consider the model for a generator of one-sided, single-
epoch signals shown in Figure 2.

The output of the filter, |F|, is the signal which will be applied
to the input of the n-dimensional orthonormal filter to determine the a.
If |[F|0) is completely unspecified, the probability that the point
representing this siénal in the n dimensional space will be within a
hypersphere of some specified radius cannot be determined. A
collection of observed signals may be thought of as arising from such
a filter which is free to vary randomly between consecutive signal
outputs. The points in the n-dimensional representation space will
then be randomly distributed through the space.

Such a model is clearly inconsistent with real world signal
sources, which are not free to vary arbitrarily but are subject to
definite constraints. If the signal is noisy, these constraints are
"soft", the constraints becoming more well defined as the signal-to-
noise ratio increases. Further discussion of the effects of noise on
this formulation will be deferred to Chapter III.

These constraints will be reflected in the distribution of signal

coordinates in the representation space. For example, a maximum



| o) I - OUTPUT

Flo) =)

IMPULSE LINEAR
AT t=0 FILTER

Figure 2 Unco:istrained Signal Generator

IO) — |F{i’l;"'*‘]| I'_'_""|F>

IMPULSE
AT t=0

Figure 3 Constrained Signal Generator
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energy restriction on the output signals,
(F|F)s<R (5)

would require that the points in the representation space lie within a
. 1/2
hypersphere of radius R .

A more realistic signal generator model which includes con-
straints on the variations between successive output signals is shown
in Figure 3. The constraints are introduced as a finite number of
filter parameters which may vary at random between signals.

Now, if the class of signals so generated is representable to

within an acceptable error on a space spanned by n patterns, the

representation of the j':h signal will be of the form:

n

i=1

where

v = [0 0,00 40 ]

and Iej ) is the error in representing the jth signal.

The number n is usually referred to as the "dimensionality" of
the signal class. For the purpose of this discussion, n will be termed
the linear dimensionality of the class. The number k will be defined
as the intrinsic dimensionality of the class. The linear and intrinsic
dimensionalities are related ounly by an inequality, k £ n. The value of

n can be considerably greater than that of k, as in the case where

11
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. 'q‘z(j)t
Fj("’i' \pz, t) = \IJi(J)e t=20 -

=0 t< o0

For arbitrary values of q;z. expansion of this class of signals on an
orthogonal basis will require a great number of coefficients, while
k=2.

The difference between n and k represents a redundancy in
representation which cannot in general be removed by a linear trans-

formation of basis.

The problem to be considered may now be stated as follows:
Given a collection of signals whose spectral coefficients a, on

a basis |4, ) are known, assume that a, = ai(\)‘lj)

where Wj = [\bi(j). \Iaz(j). . .\Pk(j)] and from these a;, estimate the

value of k.

12
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II1 GEOMETRICAL CONSIDERATIONS

A. Assumptions

Although the approach to be developed here is intended to
achieve the greatest possible generality, it was found necessary to
Place three restrictions on the hypqthetical signal generator:

[
'
4

. |F o) £ |F Jo) forallp# g (8)

As previously stated, it is advantageous from an instrumentation
standpoint to use an orthonormal basis for representing the signals

IFp ) and IF q). Thus the above restriction may be equivalently stated

ai(\vp) # ai(vq) for allp # q (9)

where

= [ 4,00 0,00 .00 ]

Were this restriction to he invalid, even for just two values of

p and q, say p' and q' so that

8@ ) = 8, (9} (10)

then the apparent dimensionality of the collection of signals would be
spuriously high. The technique to be developed in Chapter IV operates
on the locus of the signal vectors, and, for example, loops in the locus
of vectors in the single parameter case will appear to have been produi:od

by 1 two parameter signal generator.

13
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An equation of the form

-

g7, Ty, ...§)=0 (14)

is not possible here because the terms (¢n|n) in the T 's are not
deterministic. If the noise is white and has zero mean, the ‘s will
determine the most likely coordinates of each ¥, and the actual
coordinates will have a symmetric probability distribution surrounding
this point.

In Chapter IV, it will be postulated that a single-parameter
signal generator will produce signal vectors whose locus in the signal
space V will be a curve. The intrinsic dimensionality estimation
technique wi]l be baéed on this hypothesis. For large S/N energy
ratios, the n?ise hopeful'ly will do no violence to this hypothesis.
However, as the noise energy increases, one would expect a point to
be reached where a "threshold" effect occurred and the reliability of
the dimensionality measurement would fall off rapidly. In the case of
white Gaussian noise, this threshold should occur when the variance of
the noise is of the order of magnitude of the least radius of curvature
of the locus of the signal vectors ¥j. Since, when finite bases are
used, this locus may depend on the basis as well as on the signals,

the effect of noise on the measurement cannot be predicted here.

However, as a rough indication, the S/N ratio at which white Gaussian ‘

noise will have variance exceeding the least radius of curvature of the

locus of vectors representing square pulses expanded on an orthonor-

malized exponential basis will be evaluated in Chapter VII.

15




B. Distances in a Hypersphere

At this point it is necessary to digress briefly and to
consider the distribution of interpoint distances in an N dimensional
homogeneous hypersphere. This distribution was first investigated

by Deltheil (7) and more recently by Hammersley (8) and Lord (9).

Consider a sphere of radius a and dimension N. Let the
distance between two points within the sphere be designated by r,

and for convenience let

A=r/2a sothat0< A< 1, (15)

Deltheil developed an expression for the probability density function

for r, and evaluated this for some odd-integer values of N. He did

not evaluate the cases where N was even.

Using an involved approach, Hammersley obtained the

following compact form of Deltheil's exnression:

_ LN, .N-1 1 1 1
f (\)= 2°"N\ Ii-xz(zN+7' =) (16)
where x
L= | zZP .21t az/BGe, @
(o]

and B is the Beta function.

This form is good for all values of N. For the particular cases N=1,

N=2, and N = 3, i.e., a line, a circle, and a solid sphere, the above

16
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expression reduces to easily handled expressions:

£,00) = 2(1 - \)
£,00 = E2) x [ (cos ™) - 212312 ] Cun

3+X5) for 0\ <1

£,00) = 12 (A% - 3
Lord obtained the same results through a more general
approach, and showed further that the distribution of distances is
asymptotically normal as N increases, and furthermore that the

second moment of the PDF is given by

2 = 222 N(N + 2)° (18)
From Equation 17, the mean may be calculated, and this is shown in
Table 1, along wit:h—-)\2 , (with a = 1/2 for normalization), together

with the variance in the interpoint distances about the mean.

TABLE 4 Distance Distributions in Hyperspheres

N b —XZ Variance

1 .333333 166666 . 055556

2 . 452712 .250000 . 045056

3 .514286 . 300000 . 035510

© .707107 .500000 . 000000
17




The probability density functions for N=41, N=2, and N= 3
are shown in Figure 4. The function is asymptotically normal and the
variance decreases monotonically toward zero as N increases, the
limiting case being a § function at \ = 0.7074107. This result will be

of fundamental importance in the sequel.

18
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Iv. DISCUSSION OF APPROACH

Consider the output of the signal generator of Figure 3 as
projected on some orthonormal basis complete for this collection

oo
|Fj)=z 2; () (19)

i=1

where

v = [ 0,60 .. 40 ]

For each value of J, a point in a signal subspace having the ¢i asa
basis will be generated, having coordinates a g By aé. The locus
of these points will reflect the value of k, since this locus may be
described in terms of k generalized coordinates, provided that the
three assumptions in Chapter III are valid for the signal generator |F).
The problem of determining the value gf k is thus equivalent to determin-
ing whether this locus is a curve, (k = 1), a surface, (k= 2), oranm
dimensional solid (k = m). Peano's continuous mapping of an interval
onto the whole of a square shows that the dimension of a space cannot

- be defined as the number of parameters required to describe the

space. (10) That a single parameter signal generator will produce a
curve in signal space cannot therefore be rigorously shown. For
continuously varying {'s, this will be taken as an assumption under the
restrictions imposed in the preceding chapter, subject to experimental
verification. From this point on, the problem of estimating the value

of k from the spatial distribution of the points representing the signals

20
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will be taken to be equivalent to finding the number of generalized
coordinates needed to describe the locus of these points.

A related problem occurs in the field of Experimental
Psychology, and is known as the problem of Multidimensional Scaling.

Briefly, this problem is stated as follows:

*Given the experimental dissimilarities of n
objects, find a set of n points whose interpoint
distances are a monotone function of these

dissimilarities® (11, 12).

A computer routine for multidimensional scaling which is based
on the inverse relationship between interpéim: distance variance and the
dimension of a hypersphere has been written by Roger Shepard. (12)
This program begins with a collection of n points, P, Pyo-ooy Pn'
each representing some psychological quantity: color perception,
interpretation of facial expression, etc. The only knowledge of the
relationship between the P, is in the form of a similarity ranking. A
configuration is sought such that this ranking is inversely duplicated

by the distances between the P,. That is, if the quantities represented

i
by P, and P, are known to he quite similar, then the distance between

points P, and P, should be small. If the similarity between P, and Py
is denoted by sik’ and the distance between points Pi and Pk is denoted
by dy» then for all n(n-1)/2 pairs of points, the ranking of distances

and dissimilarities is to be preeerved.

21




>d (20)

It would be expected that given only the set of inequalities
ranking the Sik' the corresponding configuration of points having the
required ranking of dik would be far from unique. Surprisingly, it
can be demonstrated that for moderate values of n, (n = 50), and for
a final configuration dimensionality of 3, the resulting configuration
is very well defined. (13) At the end of this analysis not only is it
possible to obtain the proper distance ranking, but actual measurements
of these distances as well. That measurements can be obtained from
non-metric ranking data is not too startling when it is considered that
the full set of 1225 inequalities is highly redundant if the configuration
is of small dimensionality.

The method used is as follows: The n points are first located
at the n vertices of a regular n-1 dimensional simplex. The points
are then perturbed in directions which make the ranking of the (nz-n)/z
interpoint distances conform to the desired ranking. Next the points
are shifted so that dik larger than the mean are increased, and dik
smaller than the mean are decreased. These two steps are iterated
until the configuration becomes stationary. As the iterations progress,
the ranking is maintained, and the dimensionality of the configuration
decreased from n to its final value.

An anomaly in some of Shepard's results can be exploited in
solving the intrinsic dimensionality problem. If the configuration of

22
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points at some iteration in the multidimensional scaling program is
an arc of less than 180 degrees, this will be stretched out into a line.
Similarly, a hemispherical shell will be deformed into a plane surface.
In the case of multidimenoional scaling, this yields a spuriously low
dimensionality for the final configuration. In the problem considered
here, however, this is just what is needed. Provided that the ranking
is not preserved over too much of the configuration at a time, curves
in n-dimensional space collapse into lines, surfaces into planes, and
so forth. The intrinsic dimensionality of the signal source thus is
reflected as the spatial dimensionality of the final configuration. The
procedure consists of iterating two processes which together collapse

the configuration of points representing the signals |Fj) on the ¢ basis.

The first process increases the variance in interpoint distances.

Consider a configuration of points in a plane as in Figure 5.

The projections of the vector from 0 to point Pj onto the X basis
are given by "j 4 and "jz where the first subscript denotes the point and
the second subscript denotes the basis vector.

For an orthonormal basis, the distance between points i and j
is given by 1/2
dij = [(a“ - aji)z + (‘iz - jz)z ] (21)

or, in n dimensions

(‘ik = ajk)z (22)

]t -

a =
k=1

23
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Let the unit vector in the X, direction be u,. Then the vector

J J
from P, to P, is
1 J
A= a5y -agy)uy +(ay, -ap,)u, \. (23)
or, in n dimensions
n
Aij = kz1 (ajk - aik) 0y . (24)

Let the arithmetic mean of the dij bed.

To increase the variance in the dij' those distances dij < d should be
~reduced, and dij >d should be increased. This may be done incre-
mentally as follows.

Consider

u(dij -d)

= = 8y = the expansion factor (25)

by which voints Pi and P f should be moved apart, ignoring for the
moment all other pairs of points which include either P; or Pj. It is
desired to increase the magnitude of Kij by the factor Aij . Thus the
point P, should be moved a distance Aij dij/z in the direction - A 1j"
and Pj should be moved a distance Aij dij/ 2 in the direction + Kij'

25




The final coordinates for the point Pj are thus given by

i

kt o By 2y (26)

-a

Vhen the entire collection of points is considered, the shifting
-l
of the point Pj is governed by the vector sum of the Aij weighted by the
corresponding Aij/Z, as shown in Figure 6. In this case the final

position of Pj is

m

25 +1/2 i Z ) (ajk -a,) Aij (27)

where m is the to'al number of points.

The second process restores the ranking of interpoint distances
within a small spherical region local to each point, of radius 8d. To
initially determine this set of inequalities consider the point P,. The
distances to each other point, dij for i # j, are known from the calcu-
lations for the first process. Those points for which dij >8d are
ignored, and for the remaining points, the interpoint distances are
ranked. This is repeated for each point in the collection. In allm
chains of inequalities are obtained, with lengths depending on the choice
of the coefficient B.

28d is the diameter of a hypersphere of dimension n centered
on the point P;. Consider the simple case where this hypersphere
includes 3 points, which will be designated Pi' Pk' and Pj' There are

three interpoint distances, dij' dik' and dkj' Suppose further that

26
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INITIAL CONFIGURATION

d23< d2|< d'3< d“< d“< ¢"

P - ?
X\

FINAL CONFIGURATION

Figure 6 Collapsing of a Curve into a Line
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dij < dik < dkj' (*>8) Since the goal of this process is to preserve this
inequality, but not the actual values of the dij'l, etc., the d's are now
replaced by the numerical values of their rank in the inequality, Rabc'
where a designates the point at the hypersphere center, and b, ¢
designate the two points whose interpoint di-tanc? is being ranked.

For example, in the case ahove, a = i and

R =1

ikj (29)
Ry =2
Ry =3

For a hypersphere containing N points, the values of Ra.bc will run

from 1 to (N2 - N)/2 since dij = dji and the dii are zero and not ranked.

The value of a runs from 1 to m, the number of points in the collection.

Once the initial values for the R's have been determined, the
hyperspheres will no longer be required and all further calculations
will use the same values of b and c for each a.

After each iteration of the variance-increasing process, the

ranking procedure is ropeated, i.e., for the example where

. Rikj = 1, Riik = 2, and Riij = 3, the distances between points are

computed and ranked after the variance-increasing shifts have taken
place, and these ranks are designated R'ikj' Riik' and R'iij’ If within
the ith chain of inequalities no violations of the original ranking have

28

O Y L WX




occurred,
Rikj = R;kj = 1
Rie = Rige = 2 4%9)
Riij =Riij = 3

If, on the other hand, the inequalities no longer hold, then for at least
two pairs of points R ¥ R!. The more violent the scrambling of the
inec nalities, the greater will be the difference R - R!. This difference
will be symbolized by

Dk Q(Rijk "Ry (31)

where y is a constant.
When Dijk = 0, the ranking of the interpoint distance djk is correct.
For positive integer values of Dijk' the distance between points P-1 and
Py is too great, and for negative values it is too small. The procedure
for restoring proper ranking is very similar to that used to increase
variance, except that - Dijk will be used i1 place of Ajk' The minus
sign arises as a simple consequence of the definition of Dijk' Also,
an additional summation will be needed to accommodate the extra
subscript.

Consider 2 pair of points, Pj and Py within a hypersphere of
radius fd centered on point Py before the first iteration. To tend to

restore the distance between Pj and Py to its proper rank in the ith
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inequality chain, the coordinates for the point Pj are shifted from "jf

to
D

25 ~ = (25 - 2y '- (32)

In the event that the interpoint distance dij is out of place in
several of the inequality chains, the i subscript will be surmnmed over
the collection of points. This yields as the final set of coordinates for

point Pj'

m
D, '
i .
217 25 - iZ . 5 (a5) - ay) (33)
This yields the final position of Pj provided that only its distance
from Py is considered. In the desired application, the distances from
other points must be considered as well, and the shifting of Pj will
depend on the vector sum of all possible D's. This vector sum is

taken in the same way as in the variance increasing process, and the

required final position for Pj is given by:

ajl - ajl ] iZ 1 kz= 1 TL (‘jl ) .kl) 4

For each value of i, there will be many values of k and j for

which D;, . is not defined because either point P, or Pj. or both, lie

ikj
outside the initial hypersphere of radius fd. To facilitate computation,

these Dikj will be defined to be zero.
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Iterating these two processes should eventually lead to a
configuration which no longer changes, the two processes cancelling
out. Further iterations may rotate the configuration, but the "shape™
should remain fixed, as should the variance in interpoint distances.

Once the final configuration has been obtained, it remains to
identify the linear dimensionality of this configuration. A method for

doing this is based on two theorems from matrix theory. (14)

Theorem 1 The rank of a normal matrix is equal to the
number of non-zero eigenvalues possessed by the matrix.
- Theorem 2 The rank of any Gramian matrix of vectors is
equal to the linear dimensionality of the space spanned by the

vectors. Combining these theorems yields:

Corollary  The linear dimensionality of the space spanned

by a set of vectors is equal to the number of non-zero eigenvalues

possessed by the Gramian matrix.
In the case of a matrix whose elements are inner products,

the requirement that the matrix be normal and positive semidefinite

is automatically filled.
The remaining part of the procedure to be followed is as

follows:

Starting from any point j, calculate the matrix of inner products

of vectors from that point to every point in the configuration

(rjplzy = b1y O
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The number of non-zero eigenvalues of this matrix will then be
equal to the linear dimensionality of the configuration, and therefore
will be equal to the intrinsic dimensionality of the original collection’

of signals. Taking into account that |:l'jj )= 0, and that
(rjklrjl) = (rjllrjk)

the matrix B! is

(rjilrji ) <;jz'rj1>' ..0... Gj'mlrji)
(’;jzlrﬁ) (rjzl;'jz>...o...<?j,n|x-jz> : B
0 0 ..0.. 0
G:mlrji) ............. () ..(;mh:,‘m)
— = (35)

The equation to be solved is
(36)

B'-I\=0
For m signals projected on an n dimensional basis, at least
(m-n) of the \'s so obtained must be zero. This will be verified in
Chapter VI. Of the remaining n eigenvalues, k will be non-zero.
The matrix B! will of course be different for different choices of the

jth point, but the final number of non-zero eigenvalues, k, will be

constant. Several standard techniques for finding eigenvalues of
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symmetric matrices are available. The technique used in this work is
a variant of Jacobi's method. During the variance maximizing process,

the centroid of the configuration, C, is not constrained. This is of no

consequence as far as the final dimensionality is concerned, but it is
convenient that the centroid of the configuration be used as the origin
of the vectors rather than arbitrary point j. A formula which can be
used to calculate the inner product matrix, using the centroid as the

vector origin is given in Equation-37. (15)

1 2 2 2
b., = d + d O =2 -nd
k-~ Zm [ Z Jk jk = jk jk ]
j j =1 k=1 j =1 k=j+
(37)
where: bjk = element of matrix B of scalar products
referred to centroid
= Gylr ) (38)
djk = distance between jth and kth point

m = total number of points in the configuration.

It is now possible to set forth an outline for a computer program
which will accept the coefficients of a collection of signals expanded on

any basis, and from these coefficients estimate the intrinsic dimension-

ality of the collection.
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Vit OUTLINE OF COMPUTER ROUTINE

Step Number

1

Step Description

Set values fora, §, y, and ¢. Note: o
determines the rate at which the interpoint
distance variance increases; § defines the'
region about each point over which interpoint
distance ranking is to be preserved; y deter-
mines the vigor with which the program
resists inequality violations; and ¢ sets the

stopping criterion.

Read in coefficients of signals expanded on

some orthonormal basis. Coordinates of the

jth signal on the kth basis vector = ‘jk where

j=1,2,...mk=1, 2,...n.

Calculate interpoint distances
n 1/2
2
Calculate the arithmetic mean of dij b3

. ) dij/(mz-m) (40)
i=1 jJ#1
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Step Number

5
6
7

10

11

12

13

Step Description

Normalize data tomake d = 1.
Compute variance in normalized t'lij $ VAR

VARO = variance from previous iteration.

|[VARO - VAR | <¢?
Yes, go to step 20. No, go to step 8.

First iteration ?

Yes, go to step 9, No, go to step 11.

For each point i, store numbers of point j,
k such that both dij <fd and dik < fd.

d,,= 0, d=1by5. (See Figure 7)

ii
Rank a1l possible pairs of points obtained
in step 9 in decreasing order of dij' and
calculate Rijk'

Calculate A

ij
Aij = n(d“ -3)/a’=c(dij - 1).
(25)
Compute new coordinates.
m
1
(27)

Compute new values of dij'
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Step Number

14

15

16

17

18

19

20

21

22

Step Description

Compute new value of d.

Normalize I.jk'l to set newd = 1.
Compute Rijk'

Calculate Dy = ¥R,y - Ris) (34)

Compute new coordinates.

v g Dysx
2317 % Z (‘jl -y

iz1 k=1
(34)
Return to step 3.
Calculate B matrix
1 [ v 2 z 2
b,, = a5, + d
jk ~ Zm jzﬂ k4L, Ik
m-14 m Z 5
2 -
N
j=1 k=j+1
(37)

Find eigenvalues of B, using the method of
Jacobi. This is a standard subroutine.

Write out final coordinates, D matrix,

B matrix.
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Step Description

Step Number
23 Write out eigenvalues of B.
24  End

A simplified flow chart for this program appears in Figure 8.




| REaDINM,N ]

| reaowa(y) |

1

READ IN ALPHA,
BETA, GAMA, EPSILON

| WRITE ouT A(1,0) |
{ ‘

| caLcuLaTe o(1,9) |

| caLcuLATE pBar |

{o(1,9)=0(1,4)/08AR |

| catcuLate varn |

FIRST ITERATIONP

STORE ALL |, J
FOR WHICH
D{I,J) < BETA

[CALCULATE R(1,4, k) |

[WRITE OUT R(1,J, K) ]

CALCULATE NEW
COORDINATES PER
STEP NO.12

L

NO

Figure 8

| wRiTE OUT A1, 0) ]

| CALCULATE B(i,J) |

CALCULATE
EIGENVALUES

1

WRITE OUT
EIGENVALUES,
8(1,4), 0(1,4)

!

| END |
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2
CALCULATE
RPRIME (1,4,K)

$
| cALCULATE D (1,4, X) ]

CALCULATE NEW
COORDINATES PER
STEP NO. I8

?

WRITE OUT
RPRIME (), J,K)

1

| wriTE ouT vARN |

VARN-VARO|<aT

| VARO = VARN |

T

Simplified Flow Chart




VI. EXPERIMENTAL VERIFICATION

The program previously outlined was compiled from Fortr.an
statements on an IBM 7094 digital computer. This chapter describes
the results obtained for several examples of one and two-dimensional
signal collections. In all cases, the basis used consists of one-sided,
real, decaying exponentials, orthogonalized on the interval 0 - . The
exponents in the basis are -t, -2t, -3t, -4t, and -5t. These exponen-
tials may be orthogonalized by either Schmidt's method or the method

of Kautz. (16) In the time domain, the resulting orthonormal basis

is described by Equation 41.

b = @2 (e utr (41)
$, = '4)1/2 (-Ze"t + 3e-2t) u(t)
¢3 = (6)1'/2 (3e-t - 1Ze-Zt + 10 e-3t) u(t)

by = 8172 (4e™t + 3062 - 60e~3t + 350 %) u(t)

b = (10)1/2 (56~ - 60e"2t + 210”3t - 280" %

+ 126¢7°%) uft)
or equivalently,

o= iy - @2

(42)
o 0= [0, g0 (355 ][ 2, ]

forn# 1
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This basis will be referred to as the Kautz basis in the remainder of the
paper. The Kautz basis was chosen for the tests because of the eas:
with which the coefficients oi signal expansions may ba computed.
The signals used are of two types:
1. Rectangular pulses

2. Decaying real one-sided exponentials

1. A

-t->

2. e
——

All signals are of the single epoch type. Inner products of the Kautz
basis with the two basic signals used in testing this program are

tabulated below.

1. s(t) = u(t), the unit step beginningatt = 0

a,=(3,]8) = 1.414 (43)
2, = <'$2|.>= -1.000
a,=(4,l8)=  .815
a4-<$4|-)- - .707
a = <$5|s> = .632
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2. s(t) = u(t-r), the unit step beginning at t = r
a, = '(Z)i/z e
a, = -(0/% 2e77 - 3/2 &727)

33 = (‘,,)1/2 (3e-'r - 60-27 + 10/3 0-37)
2= 8112 (40T - 156727 4 20 6737 - 35/4 6747

ag = (10)1/2 (5¢"7 - 30e”°7T + 7037 - 70e 747 + -

3. s(t) = e"dt u(t), the one sided decaying real exponential

having epoch att = 0,

- (2)1/2 1

o, =@Y2( £

a, = @Y 124 53

) - e e
ST N M

s =0/ 2oy - 80 20 . 280, 126,

In the initial runs, a cutoff limit of 20 iterations was written
into the program to insure against excessive wasted time in tie event

that the configuration did not converge.
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As was stated in Chapter IV, the matrix equation

B'-I\=0 (36)

has m eigenvalues, of which at least (m-n) should be zero. As verifi-
cation that this part of the program was correct, a collection of 20
random decaying exponentials was expanded on the Kautz basis, and the
B matrix was calculated directly from this input data, without the
collapsing operation being performed. The total number of eigenvalues
so obtained should have been 20, of which 15 should have been zero.

The eigenvalues calculated are shown in Table 2.

TABLE 2

Eigenvalues
1. 7.33867 14. 0.00000
2. 1.93994 - 42. 0.00000
3. 1.49168 13. 0.00000
4. 0.32322 14. 0.00000
5. 0.14997 15. 0.00000
6. 0.00000 16. 0.00000
7. 0.00000 17. 0.00000
8. 0.00000 18. 0.00000
9. 0.00000 19. 0.00000
10. 0.00000 20. 0,00000
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This proved to be the case in every run, that is, eigenvalues 6 to 20
were always zero. Therefore, in the examples to follow, only the
first five eigenvalues are shown.

In Chapter IV, the postulate was put forth that a single
parameter class of signals should generate a locus of points in signal
space which describes a curve. To gain some insight into the shape
such a curve might have, a set of 20 rectangular pulses was expanded
on the Kautz basis. The pulse width was varied from 0.1 to 2.0
seconds, and the height was held constant at unity. It is, of course,
not possible to depict the resulting curve on a single plot, but three
projections of the curve, on the ¢1-¢3. 4)2-4) 4’ and the ¢2- ¢5 planes
are shown in Figures 9, 10, and 11. These projections show the
great nonlinearity of the curve, and also indicate that about a 10 to 1

signal to noise energy ratio might be expected to cause the program

E9.0 7 41

to collapse the configuration to a line.

In the examples to follow, signals of one or two parameters
were expanded on the Kautz basis, and their intrinsic dimensionalities
were determined by the program. The same set of control parameters,
a, B, vy, and ¢ were used in all cases. Examples 1 and 3 were
single parameter classes of signals, while Examples 2 and 4 had two
independently varying parameters. Example 5 shows the effect of

dependence in the variation of two parameters. It is essentially the

same clas: of signals as in Example 2, but the program identifies it as

a single-parameter class due to the dependent parameter variation.
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A. Example 1

Signal used - Rectangular pulses of unit amplitude with width r
varied from 0.1 to 2. 0 seconds in equal steps. (This is the signal

collection depicted in Figures 9, 10, and 11) 20 signals.

Parameter values: a=0.05 y=0.04
8=0.75 e = 0.005

Number of iterations required = 8

Running time = 3 hundredthe hour

Eigenvalues obtained: 35, 914352
. 000008
. 000000
. 000000
. 000000

48
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EXAMPLE 1

Coefficients on Kautz_ Baqia

Signal

o BN N |

Number 24 "2 23 2y 25
1 1346 .1632 .1514 4116 .0578
2 . 2564 . 2640 .1707 .04165  -.0582
3 . 3665 .3168 .1188 -. 0649 -.1230
4 . 4662 .3333 . 0352 -.1453 -.1044
5 . 5564 . 3225 -.0557 -.1800 -.3306
6 . 6384 .2947 -.1395 -.1740  +.0521

. 7119 . 2466 -.2083 -.1289 1226
8 . 7788 .1916 -.2588 -.0663 .1638
9 . 8392 .1304 -.2905 . 0052 1722
10 .8940 . 0655 -.3043 .0763 .1514
11 . 9435 .0009 -.3023 .1405 .1086
12 .9883 .0674 -.2866 .1937 .0523
13 . 029 1327 -.2599 .2336 -.0098
14 . 065 .1960 -.2243 .2597 -.0712
15 . 099 .2568 -.1822 2724 -.1268
16 .129 .3147 -.1352 2721 -.1734
17 .456 . 3694 -.0852 L2641 -.2092
18 .180 . 4208 -.0335 .2408 -.2334
19 .203 . 4688 +.0189 .2128 -.2460
20 .223 .5136 +.0709 .1789 -.2479
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B. Example 2

Signals used - Rectangular pulses with both amplitude, A, and

width, 7, varied as shown below:

Signal Signal

Number S A Number T A
1 0.1 0.6 11 0.1 1.0
2 0.4 0.6 12 0.4 1.0
3 0.7 0.6 13 0.7 1.0
4 1.0 0.6 14 1.0 1.0
5 1.3 0.6 15 1.3 1.0
6 0.1 0.8 16 0.1 1.2
7 0.4 0.2 17 0.4 1.2
8 0.7 0.8 18 0.7 1.2
9 1.0 0.8 19 1.0 1.2
10 1.3 0.8 20 3.3 1.2
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Parameter Values: a=0,05

#=0.75

Number of iterations required = 5

Running time = 3 hundredths hour

Eigenvalues obtained: 27.56159

1.19406
. 00001
. 00000
. 00000
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EXAMPLE 2

Coefficients on Kautz Basis

= e e i et

g%ﬁﬁir 2y 22 25 4 25
1 . 0808 . 0981 . 0909 . 0670 . 0347
2 .2780 .1995 . 0242 -.0872  -.0627
3 . 4275 1484  -.4250 -.0774 . 0726
4 .5360 .0393 -.1827 , 0458 . 0909
5 L6170 -.0795 -.1559 . 1401 -.0059
6 .1078 .1306 1244 . 0893 . 0462
7 .3730 L2666 . 0282 .. 1162 -.0835
8 . 5695 . 1975 -. 1666 -.1034 . 0981
9 . 7152 .0524  -.2434 . 0610 4214
10 .8232 -.1062  -.2079 .1869  -.0078
14 .1346 . 1632 .1514 116 . 0578
12 . 4662 .3333 . 0352 -, 1453 -.1044
13 . 7119 .2466  -,2083 -. 1289 1226
14 . 8940 L0655  -.3043 . 0763 .1514
15 1.029 - 4327 -.2599 .2336  -.0098
16 .1616 . 1961 .1818 . 1340 . 0694
17 . 5560 . 3990 . 0423 -.1744  -.4253
18 . 8550 2968  -.2500 -. 1547 1471
19 1,072 0786  -.3655 . 0916 . 1818
20 1.234 -.1594 -.3149 . 2802 -.0149
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C. Example 3

Signals used - Real decaying one-sided exponentials of unit

amplitude _I\ e -dt

é varied from 0.1 to 2.0 seconds in equal steps. 20 signals.

Parameter Values: a=0.05 y=0.04
8=0.75 ¢ = 0.005

Number of iterations required = 8

Running time = 4 hundredths hour

3 -

© .

v Eigenvalues obtained: 38.517118
R . 000010
e 00000
B . 000000
L . 000000

. 000000
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EXAMPLE 3
Coefficients on Kautz Basis
fﬁﬁﬁiLr 24 22 23 24 25
1 . 12856 . 1364 .1030 . 0594 .032
2 .2357 .1905 . 0874 . 022 .003
3 .32636 .2019 .0522 . 001 0.
4 . 40405 .1905 . 0210 -.004 0.
5 L4714 1667 0. . 0003 0.
6 .53033 1363 -0.012 . 0020 0.
7 . 58232 .1029  -0.016 . 0045 0. -.%
8 . 62853 .06840  -0.015 . 0065 0. i?
9 .66990  .03380 -0.0091 .0040 0. t;
10 70711 0. 0. 0. 0. 9
11 .74078  -.0327 0.011 -0. 0051 0.
12 77139 -.0642 0.024 -0.0120 0.
13 .79934  -.0942 0.0377 .0.0210 0.
14 .82495  -.1228 0.0519 -.0291 0.
15 .84853  -.1500 0.0669 -.0385 .03
16 .87028  -.1758 0.0816 -.0478 .03
17 .89043  -.2004 0.0968 -.0591 .06
18 .90914  -.2236 0.1110 -.0696 .06
; 19 .92655  -.2457 0.1260 -.0795 .06
20 .94281  -.2667 0. 1400 -.0897 .06
54
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D. Example 4
Signals used - Real decaying one-sided exponentials with
decrement and amplitude varied as shown below.
Signal Signal
Number d A Number d A
1 10 0.6 11 10 1.0
2 2.5 0.6 12 2.5 1.0
3 1.5 0.6 13 1.5 1.0
‘ 4 1.0 0.6 14 1.0 1.0
r ]
o 5 .75 0.6 15 .75 1.0
-
w 6 10 0.8 16 10 1.2
] 7 2.5 0.8 17 2.5 1.2 |
B
8 1.5 0.8 18 1.5 1.2
9 1.0 0.8 19 1.0 1.2
10 75 0.8 20 75 1:Z
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Parameter Values:

a=0.05

8=0.75

Number of iterations required = 5

Rurining time = 3 hundredths hour

Eigenvalues obtained:

44.8376
. 1519
. 0010
. 0000
. 0000
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e= 0.0005

£OT

7



%

.‘.;;

TR 7 ‘@

EXAMPLE 4

Coefficients on Kautz Basis

-
Enggér 24 %5 o By a5
1 0772 .0818 . 0618 . 0356 . 0192
2 .2425 . 1143 L0126 . 0006
3 3494 0617 -. 0096 L0027
4 . 4243 0.
5 4796 . 0565 L0226 L0126
6 1029 .1091 . 0824 . 0475 . 0256
7 3233 1524 . 0168 .0008
8 . 4658 .0823 -.0128 . 0036
9 5657 0.
10 6394 L0753 .0302 . 0168
11 1286 L1364 .1030 . 0594 . 0320
12 . 4041 .1905 L0210 . 0010
13 .5823 . 1029 -.0160 . 0045
14 . 7074 0.
15 7993 . 0942 L0377 . 0240
16 1543 1636 1236 L0712 . 0384
17 . 4849 .2286 L0252 . 0012
18 . 6988 .1235 -. 0192 . 0054
19 . 8485 0.
20 . 9592 . 1130 . 0452 . 0252
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E. Example 5
Signals used - Rectangular pulses with both amplitude and

width varied, but with 7 = 2 sin A, and T varied from 0.4t0 2.0

seconds in equdl steps. 20 signals.

Parameter Values: a=0.05 y = 0.04
p=0.75 e = 0.005

Number of iterations required = 8

Running time = 4 hundredths hour

Eigenvalues obtained: 41.03028

L
. 00001
. 00000 ;
. 00000
. 00000 o
5%
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EXAMPLE 5

Coefficients on Kautz Basis

Signal

Number 24 22 \ 23 24 25
1 . 0067 . 0082 . 0076 .0056 . 0029
2 . 0256 . 0264 L0171 . 0042 .0058
3 . 0553 . 0478 .0179 -.0098 . 0186
4 . 0942 . 0673 . 0072 -.0294  -.0214
5 .1408 . 0816 -.0141 -.0455 . 0836
6 . 1946 . 0889 -. 0426 -.0522 .0159
7 .2549 . 0883 -. 0746 -.0462 . 0439
8 .3201 .0788 -.1064 -.0272 .0673
9 . 3914 . 0608 -.1354 .0024  .0803
10 . 4681 . 0343 -.1593 . 0400 . 0793
11 .5501 -. 0005 -.1762 . 0849 . 0633
12 . 6365 -.0434 -.1846 1247 . 0337
13 L7275 -.0938 -.1837 . 1652 . 0069
14 .8243 -. 1517 -.1736 .2010 . 0551
15 . 9309 -.2175 -.1543 .2305 .1074
16 1.045 -.2914 -.1252 .2520 . 1606
17 1.174 -.3750 -.0865 . 2651 .2124
18 1.1322 -. 4713 -.0375 . 2697 L2614
19 1.508 -.5877 L0237 L2668 . 3084
20 1. 921 -.8068 . 1110 .2810 . 3894
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These results are in complete agreement with the "correct"

results. Cases 1 and 3, the single-parameter cases, produced single
non-zero eigenvalues. Cases 2 and 4, with two independently varying
parameters, produced two non-zero eigenvalues. Case 5, with two

varying parameters, produced a single eigenvalue. This is in agree-

ment with the discussion in Chapter III, Equation 12.
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VII. DISCUSTION

A. Effect of Computer Parameters

The discussion and outlining of the computer program in

Chapters IV and V avoided comment on the effects of the parameters
a, B, and y on the final results. A few such comments follow. Of
course, the values of these "constants” will.depend to an extent on the
input data, and since this cannot be predicted, some adjustment may
be necessary during the computation. From Shepard's experience
with the Multidimensional Scaling problem, (13) a few indications as
to reasonable starting values for a and y were obtained. The value of
8 had to be considered separately, as nothing in multidinensional

scaling corresponds to 8.

1. Alpha

a determines the rate at which the interpoint distance
variance increases, or, equivalently by Equation 16, the rate at which
the dimensionality of the configuration decreases. Large values of a
collapse the structure more rapidly, but unfortunately also do violence
to the ranking of distances within the inequality chains. It is therefore
prudent to use small values for a, and a few more iterations. To this
end, Shepard used program parameter values corresponding to values
of a from 0.01 to 0.05. Since the goals of the program described here
and Shepard's program are widely different, a one-to-one correspond-
ence in parameters does not exist, and the values a = 0. 041 to 0.05

should be used only as a starting point. For the 20-signal examples
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of Chapter VI, a = 0. 05 was satisfactory, although this may be too

high if more than 20 signals are included in the collection.

2. Gamma
As a striking example of the danger in blindly using .
Shepard's parameter values, consider y, the parameter determining
the vigor with which the program resists inequality violations.
Shepard uses 0.2 for this parameter, while in the intrinsic dimen-
sionality program, instabilities resulted if y exceeded 0.05. In
multidimensional scaling, only one chain of inequalities is used, while
here the number varies as an inverse function of . The result is
that an inversion of ranic in any one chain of inequalities is likely to
occur in several others. This will multiply the effect of y several |
times, and since y is a feedback parameter, instability may result if
v is not held to a low value. y = 0.04 proved satisfactory for the (

experimental work in Chapter VI.

3. Beta

Now the second parameter, f, is more difficult to discuss.
Perhaps the best way to approach it is to look at an analogy *7ith a
parameter in "clustering™ problems. (17, 18) Young, in performing
an analysis on a collection of signals, considers their first-order
correlations, and forms a cross-correlation matrix, symmetric with
1's on the diagonal. If any element exceeds a threshold, it is replaced
by unity, if not, with zero. All further work is then done with this

matrix. Thus the matrix, and hence the clusters obtained, depend
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heavily on the choice of threshold. All that Young could suggest was
that if N is the number of clusters obtained and n was the threshold
0< n <1, then if the function N(n) showed small values of first
derivative for a wide range of n, then the threshold should be put in
this range.

Now, a similar phenomenon will be observed as the value of B
is varied. For very small 8, each chain of inequalities contains only
a few distances to be ranked. The configuration is very loosly defined
and may collapse into a line no matter what the original configuration.
On the other hand, large values of B place nearly every possible
distance, dij’ in each chain. From Shepard's results this means
that the program would repeatedly reproduce the original data with no
collapsing.

This may be thought of as arising from the discrete nature of
the input data. Through any finite collection of points in space, many
curves, surfaces, etc., may be passed. The problem is one of
finding a "best" number of dimensions for a discrete collection
in the sense that as the number of signal samples increases and the
collection of points begins to approximate a continuum, it is desired
that the dimensionality of that continuum be the same as the "best"
estimatc. One approach is to follow Young, and determine whether
the value of k is invariant under a wide variation of 8. If so, the
midpoint of this range of @ should be used, and the resulting value

of k taken as the best estimate of the true value. In this manner, the

value of B for the examples of Chapter VI was set at 0. 75.
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B. Future Work

Extensions of this work are needed in several areas. The
first of these is the study of the effect of noise added to the input data.
This was briefly discussed in Chapter III, but a complete investigation
has not been undertaken. It is expected that a threshold effect will
occur when additive noise is present in the data, and both theoretical
and experimental work should be performed to verify or disprove this
supposition. Various probability distributions for the noise should be
considered, as well as the relationship between signal-to-noise ratio;
number of signal samples; and frequency of errors in estimating
dimensionality.

Another area of needed research involves Assumption 2 of
Chapter III, Equation 11. This is the assumption which involves a
complete independence of the parameter variations in the signal
generator. It has been stated that independent variations will yield the
correct results, while two parameters which 2re functionally dependent
will appear to the computer program to be a single parameter, thus
reducing the apparent dimensionality by one. No mention has been
made of a possible statistical relationship between two parameters.
This would be the case where the statistics of the variation of one
parameter are modified in accordance with the value of a second
parameter. Errors here would depend on the correlation between the

two variations, and an investigation of such errors would be of value.
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Another important area for more work is the question of
stability of the computer program. As previously mentioned, ¢ is a
feedback parameter, and wherever feedback is involved, the stability
problem arises. In early runs with the program described here,
convergence was not obtained. A reduction in the value of beta
corrected the situation, and convergence was obtained. A means
for eliminating this trial-and-error process, or at least automating
it, would be of value. Excessive values of § resulted in divergence
of the configuration, accompanied by a sharp decrease in the interpoint
distance variance. This decrease was monitored, and when it occurred,
the program was stopped. It may be possible to continuously monitor
the variance changes from one iteration to the next, and modify ¢ as
the computer run progresses. This is only an ad hoc approach,
however, and a full investigation of stability criteria would result in
the saving of considerable computer time which must be wasted now
before a satisfactory value for § is established for each set of data.
Such an investigation should be carried out in conjunction with the
additive noise investigation because the stability of the program will
almost certainly be dependent on the noise present in the input data.

Of course, the most important future work with this program
will be in applying it to actual signal analysis problems. A few such

problems are suggested in the conclusion.
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C. Conclusion

A definition of the intrinsic dimensionality of a
signal collection has been formulated, and a computer program
capable of evaluating this attribute of the collection has been
written and evalnated. The program for making these
estimations has several advantages over the conventional

linear signal analysis techniques.

1. It uses the data points themselves, not an
inferred continuous plot.

2. It is insensitive to changes in the basis on which
the signals are projected.

3. It assumes no prior knowledge of the signals,
except that most of their energy can be

represented on the basis used.
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